The Picard groups for unital inclusions of unital $C^*$-algebras
نویسندگان
چکیده
منابع مشابه
Topological Stable Rank of Inclusions of Unital C*-algebras
Let 1 ∈ A ⊂ B be an inclusion of C*-algebras of C*-index-finite type with depth 2. We try to compute topological stable rank of B (= tsr(B)) when A has topological stable rank one. We show that tsr(B) ≤ 2 when A is a tsr boundedly divisible algebra, in particular, A is a C*-minimal tensor product UHF ⊗ D with tsr(D) = 1. When G is a finite group and α is an action of G on UHF, we know that a cr...
متن کاملIsomorphisms in unital $C^*$-algebras
It is shown that every almost linear bijection $h : Arightarrow B$ of a unital $C^*$-algebra $A$ onto a unital$C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries $u in A$, all $y in A$, and all $nin mathbb Z$, andthat almost linear continuous bijection $h : A rightarrow B$ of aunital $C^*$-algebra $A$ of real rank zero onto a unital$C^*$-algebra...
متن کاملVarieties of Unital `-Groups and ΨMV-Algebras
(Day 1): References (for general background) →Varieties of lattice-ordered groups, N. R. Reilly, in Lattice-Ordered Groups, Advances and Techniques, A. M. W. Glass and W. C. Holland (eds.), Kluwer Academic Publishers, 1989. Lattice-Ordered Groups, an Introduction, M. Anderson and T. Feil, D. Reidel Pub. Co., 1988. Theory of Lattice-Ordered Groups, M. Darnel, Marcel Dekker, 1995. Partially Order...
متن کاملProperty (T) for non-unital C ∗-algebras ∗
Inspired by the recent work of Bekka, we study two reasonable analogues of property (T ) for not necessarily unital C∗-algebras. The stronger one of the two is called “property (T )” and the weaker one is called “property (Te)”. It is shown that all non-unital C*-algebras do not have property (T ) (neither do their unitalizations). Moreover, all non-unital σ-unital C*-algebras do not have prope...
متن کاملJordan ∗−homomorphisms between unital C∗−algebras
Let A,B be two unital C∗−algebras. We prove that every almost unital almost linear mapping h : A −→ B which satisfies h(3uy + 3yu) = h(3u)h(y) + h(y)h(3u) for all u ∈ U(A), all y ∈ A, and all n = 0, 1, 2, ..., is a Jordan homomorphism. Also, for a unital C∗−algebra A of real rank zero, every almost unital almost linear continuous mapping h : A −→ B is a Jordan homomorphism when h(3uy + 3yu) = h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Scientiarum Mathematicarum
سال: 2020
ISSN: 0001-6969
DOI: 10.14232/actasm-019-271-1